П. Макееву. В 1955 году тот возглавил специализированное "КБ Машиностроения" в Миассе.
Собственно говоря, чем морской старт отличается от наземного? Казалось бы, бери готовую ракету, ставь на подводную лодку и запускай себе. Но все не так просто. Представим самый простой вариант: лодка в надводном положении, люк ракетной шахты открыт - пуск. Из ракетных двигателей бьет струя газов, толкая ракету вверх. Но одновременно с тем же усилием толкает лодку вниз и основательно, метров на двадцать, если не больше, притапливает её. Естественно, притапливает нос (или корму), где расположена шахта, причем за считанные секунды, создавая глубокий крен. Ракета уже идет не перпендикулярно вверх, а чуть ли не по горизонтали, и уже практически из-под воды. Прибавьте к этому нормальную морскую волну метра четыре высотой, качку - бортовую или килевую, какая больше нравится, и порывистый ветер, опрокидывающий ракету, пока она ещё толком и из шахты не вылезла. А ещё у ракеты отсутствуют всякие стабилизаторы, закрылки и прочие торчащие детали, поскольку шахта подводной лодки - это не то что подземная, которую можно расширять как угодно. И как должна управляться в полете ракета, у которой нет стабилизаторов?
А старт из подводного положения создает ещё больше проблем. Ведь ракете требуется преодолеть плотную толщу воды, а это предполагает ещё большую мощность двигателя и дополнительный расход топлива. А как поведет себя ракета при переходе из одной среды в другую, ведь волны и ветер никто не отменял. И может так случиться, что запускать придется в шторм баллов в шесть силой, когда лодку у поверхности швыряет почти так же, как если бы она была над водой. И есть ещё одно явление, о котором понятия не имели, пока не начали проводить испытательные пуски из-под воды. Оно называется кавитация. Это когда на поверхности ракеты начинают образовываться газовые пузырьки, и это меняет свойства среды, но очень неравномерно, и ракета утрачивает стабильность направления.
Есть и другие серьезные проблемы. Американцы, например, не смогли разместить на лодках ракеты с жидкостными двигателями. Им требуется особый режим, ведь "жидкостями", которыми заправлена ракета, могут оказаться жидкий кислород или азотная кислота. Американцы с этим не справились и у них с самого начала все ракеты подводного базирования были твердотопливными. А наши конструктора всегда гордились, что ставят на лодки "изделия" с "нормальными движками". Тем не менее, наши первые морские ракетные комплексы уступали американским практически по всем показателям по дальности и точности стрельбы, в навигации и т. д. К середине 1960-х годов Америка обгоняла нас по количеству лодок и установленных на них ракет. У них уже были разделяющиеся боеголовки, что резко повышало их боевые возможности. Стратегического равновесия мы начали достигать к 1980-м годам. Вот тогда и начались переговоры о взаимном сокращении ядерного оружия.
В "макеевской фирме" разработаны все ракетные комплексы для ударных подводных лодок - "Зыбь", "Высота", "Волна", "Штиль", "Прибой", "Риф". В принципе, каждая новая серия атомных подводных ракетоносцев оснащалась новым комплексом. Менялась доктрина сдерживания, менялись и ракеты. Вначале нацеливались на заряды большой мощности, чтобы бить по крупным объектам, выжигать ядерным взрывом огромные территори. Соответственно, боеголовка представляла моноблок. Затем стали делать разделяющиеся боеголовки, чтобы точечными ударами поразить наиболее важные и опасные объекты противника.
Особая история - создание советских твердотопливных ракет морского базирования. В среде ракетчиков до сих пор бытует мнение, что это была "заморочка Политбюро". Дескать, партийные вожди, узнав, что у американцев на подводных лодках стоят твердотопливные ракеты, тут же захотели догнать и перегнать. Поступил заказ на разработку таких же конструкций. В. П. Макеев противился как мог. Он считал, что традиционные для нашего флота ракеты на жидком топливе ничуть не хуже, что придется понапрасну потратить массу средств и человеческих сил на создание конструкций, дублирующих уже имеющиеся, придется разворачивать чуть ли не новую отрасль.
Его можно понять. Принципиально новая ракета требовала огромного объема исследований и иных подходов. Нужны были новые лаборатории, оборудование, специалисты. А куда девать сотни специалистов старых двигателистов, топливников и прочих? И что делать с производственными мощностями, если сложнейшие двигательные установки с их оборудованием высокого давления, клапанами и тому подобным высокотехнологичным оборудованием станут не нужны? Если вместо всего этого будут привозить готовые пороховые шашки? Это похуже всякой конверсии будет. В общем, типичные противоречия интересов ведомственного заказчика и ВПК.
Тем не менее, именно В. П. Макеев и его коллектив выполнили этот заказ. Проблем было выше головы. Начиная с самого твердого топлива, традиционно именуемого "порох". Круглые шашки, которыми последовательно заполняется тело ракеты, горели неравномерно. Эту проблему решили, в том числе, особым рифлением поверхностей и системой каналов внутри шашек. Попутно выяснилось, что для качества пороха особую роли играет исходное сырье. Лучший порох для ракетного топлива изготавливается на основе целлюлозы, выработанной из байкальской сосны на байкальской воде. Так что недаром западные "гринписовцы" и их российские сателлиты тратят сотни тысяч долларов на пропагандистские акции, требуя закрыть Байкальский целлюлозно-бумажный комбинат.
По другому пришлось решать вопрос с управлением полетом. Старый опыт не годился, ведь в жидкостных реактивных двигателях рулили, манипулируя соплами двигателей. А в твердотопливном вся газодинамика иная, соответственно, требуются другие материалы и технологии. Когда новые ракеты были созданы и приняты на вооружение, выяснилось, что они обладают целым рядом преимуществ по сравнению с традиционными жидкостными. В прежних ракетах в качестве окислителя используется азотная кислота. Не надо объяснять, насколько это опасно. Поступающие на вооружение ракеты перед загрузкой в шахты подлодки заправлялись топливом и окислителем. Через полгода, когда лодка возвращалась с боевого дежурства, её разоружали ракеты извлекались, поскольку срок хранения заправленной ракеты ограничен.
Твердотопливные ракеты могут храниться и стоять в готовности на боевом дежурстве годами. Они гораздо безопасней в обслуживании. Нет азотной кислоты - нет риска утечек, отравлений, аварий и других неприятностей. Облегчен сам режим хранения. Отпала необходимость в специальных судах, обеспечивающих подготовку и установку ракет. Уменьшилось количество кабелей и телеметрии. В общем, твердое топливо оказалось пригодно не только для снарядов установок "Град".
Конструирование морских ракет гораздо сложней, чем ракет сухопутных, не только из-за качки, толщи воды и прочих специфических факторов. Имеется ещё одна сложность. Лодка постоянно находится в движении, естественно, под водой. А для того, чтобы навести ракету на цель, надо знать не только координаты мишени, но и координаты старта. То есть системы наведения морских ракет тоже имеют свою специфику. И разрабатываются эти системы тоже на Урале, в Екатеринбурге, в НПО "Автоматика". Много лет во главе НПО находился Главный конструктор академик Николай Александровия Семихатов.
До того, как в 1946 году прийти в НИИ-885, успел повоевать на фронтах Великой Отечественной. В отделе Н. А. Пилюгина занимался разработкой систем управления. Тогда ещё из трофейных немецких комплектующих собирали "Фау-2". Естественно, ни о каких морских ракетах, тем более подводного базирования, никто тогда и не помышлял. Главным конструктором был Сергей Королев, и Семихатов считает его своим учителем. В 50-е годы ракетостроение разделилось на "морское", "космическое" и "сухопутное". Были образованы новые КБ. Морская тематика, как это ни странно, оказалась заброшена в самую середину России - на Урал. А поскольку здесь в Миассе оказался ракетный центр, то вполне логично институт, где разрабатывали систему управления, оказался тоже на Урале - в Свердловске. Здесь вскоре подобрался коллектив талантливых специалистов, который с успехом решал сложнейшие проблемы, которые и не снились конструкторам наземных и космических ракет.
Поскольку лодка может находиться в любой точке мирового океана, то перед пуском необходимо определить координаты точки пуска и цели, чтобы проложить курс. Для этого, помимо всего прочего, была изобретена система астронавигации. В головной части ракеты находится астрокупол оптико-механическая система, которая считывает положение звезд на небе и определяет координаты и курс. Это гигантский объем данных, где, кроме самых ярких звезд, должно учитываться вращение Земли, её движение относительно Солнца и Луны, угловые склонения и ещё масса дополнительных факторов. По сути, предварительно должна быть создана математическая модель изрядного куска вселенной, к тому же действующая в реальном времени. Создавалось это все ещё в те времена, когда "пентиумами" и не пахло. Но электронно-счетные машины всего лишь выполняют задание, заложенное оператором. В НИИ имелись талантливые математики-аналитики, которые создали формулы расчетов.
Другая система навигации основана на взаимодействии со спутниками. Она конечно проще, но вот надежней ли? Спутники тоже сбиваются, а постановка электронных помех может лишить такую систему всякой управляемости, ослепить её. А вот звездное небо никаким зонтиком не закрыть, и астронавигационная система приведет боеголовку точно в цель.
Когда вслед за американцами начали делать ракеты с разделяющейся головной части, понадобилось решить вопросы наведения каждой головки в отдельности. Ведь у каждой своя цель. А, кроме того, среди двенадцати головок одной ракеты 2-3 ложных, которые должны отвлечь на себя средства обороны противника и создать помехи. У них, естественно, свои задачи, которые надо грамотно перевести в полетное задание. Оптико-механический астрокупол один на всю "голову". Разделяющиеся части снабжать собственной системой ориентации по звездам просто нерационально. Поскольку масса заряда такой части невелика, её задача - поразить цель с максимальной точностью. Поэтому здесь принцип наведения другой - по рельефу. Сканируя земную поверхность, головка находит ориентиры и падает точно в цель.
Большую проблему представляло моделирование этого процесса. Математическая модель, как правило, не дает реального представления о происходящих процессах. А испытательный пуск для проверки неотработанной системы - выброшенные на ветер миллиарды, потерянное время и лишняя загрузка аппаратуры и тысяч людей. Выход был найден: испытывать макет в ванне со специальной жидкостью. Когда стали подбирать, что залить в ванну, оказалось, что по характеристикам проницаемости среды лучше всего подходит... спирт. До сих пор в НИИ ходят легенды о бассейне на шестьсот кубометров чистого спирта, в котором водили на веревках макет с опытной аппаратурой. Но это только легенды. После того, как слух о грядущем бассейне со спиртом распространился по всем отделам и народ начал шушукаться, Семихатов категорически воспротивился: "Или вычерпают, или перетонут. Найдите что-нибудь подешевле". Пришлось опытным путем подбирать водный раствор различных реактивов.
В интституте НПО "Автоматика" отработаны практически все возможные системы наведения. Вплоть до автономной коррекции в полете. Здесь, как считает академик Семихатов, все возможности исчерпаны. Надо менять сам принцип управления головной частью, чтобы добиться сверхточного попадания на дальностях в несколько тысяч километров.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Собственно говоря, чем морской старт отличается от наземного? Казалось бы, бери готовую ракету, ставь на подводную лодку и запускай себе. Но все не так просто. Представим самый простой вариант: лодка в надводном положении, люк ракетной шахты открыт - пуск. Из ракетных двигателей бьет струя газов, толкая ракету вверх. Но одновременно с тем же усилием толкает лодку вниз и основательно, метров на двадцать, если не больше, притапливает её. Естественно, притапливает нос (или корму), где расположена шахта, причем за считанные секунды, создавая глубокий крен. Ракета уже идет не перпендикулярно вверх, а чуть ли не по горизонтали, и уже практически из-под воды. Прибавьте к этому нормальную морскую волну метра четыре высотой, качку - бортовую или килевую, какая больше нравится, и порывистый ветер, опрокидывающий ракету, пока она ещё толком и из шахты не вылезла. А ещё у ракеты отсутствуют всякие стабилизаторы, закрылки и прочие торчащие детали, поскольку шахта подводной лодки - это не то что подземная, которую можно расширять как угодно. И как должна управляться в полете ракета, у которой нет стабилизаторов?
А старт из подводного положения создает ещё больше проблем. Ведь ракете требуется преодолеть плотную толщу воды, а это предполагает ещё большую мощность двигателя и дополнительный расход топлива. А как поведет себя ракета при переходе из одной среды в другую, ведь волны и ветер никто не отменял. И может так случиться, что запускать придется в шторм баллов в шесть силой, когда лодку у поверхности швыряет почти так же, как если бы она была над водой. И есть ещё одно явление, о котором понятия не имели, пока не начали проводить испытательные пуски из-под воды. Оно называется кавитация. Это когда на поверхности ракеты начинают образовываться газовые пузырьки, и это меняет свойства среды, но очень неравномерно, и ракета утрачивает стабильность направления.
Есть и другие серьезные проблемы. Американцы, например, не смогли разместить на лодках ракеты с жидкостными двигателями. Им требуется особый режим, ведь "жидкостями", которыми заправлена ракета, могут оказаться жидкий кислород или азотная кислота. Американцы с этим не справились и у них с самого начала все ракеты подводного базирования были твердотопливными. А наши конструктора всегда гордились, что ставят на лодки "изделия" с "нормальными движками". Тем не менее, наши первые морские ракетные комплексы уступали американским практически по всем показателям по дальности и точности стрельбы, в навигации и т. д. К середине 1960-х годов Америка обгоняла нас по количеству лодок и установленных на них ракет. У них уже были разделяющиеся боеголовки, что резко повышало их боевые возможности. Стратегического равновесия мы начали достигать к 1980-м годам. Вот тогда и начались переговоры о взаимном сокращении ядерного оружия.
В "макеевской фирме" разработаны все ракетные комплексы для ударных подводных лодок - "Зыбь", "Высота", "Волна", "Штиль", "Прибой", "Риф". В принципе, каждая новая серия атомных подводных ракетоносцев оснащалась новым комплексом. Менялась доктрина сдерживания, менялись и ракеты. Вначале нацеливались на заряды большой мощности, чтобы бить по крупным объектам, выжигать ядерным взрывом огромные территори. Соответственно, боеголовка представляла моноблок. Затем стали делать разделяющиеся боеголовки, чтобы точечными ударами поразить наиболее важные и опасные объекты противника.
Особая история - создание советских твердотопливных ракет морского базирования. В среде ракетчиков до сих пор бытует мнение, что это была "заморочка Политбюро". Дескать, партийные вожди, узнав, что у американцев на подводных лодках стоят твердотопливные ракеты, тут же захотели догнать и перегнать. Поступил заказ на разработку таких же конструкций. В. П. Макеев противился как мог. Он считал, что традиционные для нашего флота ракеты на жидком топливе ничуть не хуже, что придется понапрасну потратить массу средств и человеческих сил на создание конструкций, дублирующих уже имеющиеся, придется разворачивать чуть ли не новую отрасль.
Его можно понять. Принципиально новая ракета требовала огромного объема исследований и иных подходов. Нужны были новые лаборатории, оборудование, специалисты. А куда девать сотни специалистов старых двигателистов, топливников и прочих? И что делать с производственными мощностями, если сложнейшие двигательные установки с их оборудованием высокого давления, клапанами и тому подобным высокотехнологичным оборудованием станут не нужны? Если вместо всего этого будут привозить готовые пороховые шашки? Это похуже всякой конверсии будет. В общем, типичные противоречия интересов ведомственного заказчика и ВПК.
Тем не менее, именно В. П. Макеев и его коллектив выполнили этот заказ. Проблем было выше головы. Начиная с самого твердого топлива, традиционно именуемого "порох". Круглые шашки, которыми последовательно заполняется тело ракеты, горели неравномерно. Эту проблему решили, в том числе, особым рифлением поверхностей и системой каналов внутри шашек. Попутно выяснилось, что для качества пороха особую роли играет исходное сырье. Лучший порох для ракетного топлива изготавливается на основе целлюлозы, выработанной из байкальской сосны на байкальской воде. Так что недаром западные "гринписовцы" и их российские сателлиты тратят сотни тысяч долларов на пропагандистские акции, требуя закрыть Байкальский целлюлозно-бумажный комбинат.
По другому пришлось решать вопрос с управлением полетом. Старый опыт не годился, ведь в жидкостных реактивных двигателях рулили, манипулируя соплами двигателей. А в твердотопливном вся газодинамика иная, соответственно, требуются другие материалы и технологии. Когда новые ракеты были созданы и приняты на вооружение, выяснилось, что они обладают целым рядом преимуществ по сравнению с традиционными жидкостными. В прежних ракетах в качестве окислителя используется азотная кислота. Не надо объяснять, насколько это опасно. Поступающие на вооружение ракеты перед загрузкой в шахты подлодки заправлялись топливом и окислителем. Через полгода, когда лодка возвращалась с боевого дежурства, её разоружали ракеты извлекались, поскольку срок хранения заправленной ракеты ограничен.
Твердотопливные ракеты могут храниться и стоять в готовности на боевом дежурстве годами. Они гораздо безопасней в обслуживании. Нет азотной кислоты - нет риска утечек, отравлений, аварий и других неприятностей. Облегчен сам режим хранения. Отпала необходимость в специальных судах, обеспечивающих подготовку и установку ракет. Уменьшилось количество кабелей и телеметрии. В общем, твердое топливо оказалось пригодно не только для снарядов установок "Град".
Конструирование морских ракет гораздо сложней, чем ракет сухопутных, не только из-за качки, толщи воды и прочих специфических факторов. Имеется ещё одна сложность. Лодка постоянно находится в движении, естественно, под водой. А для того, чтобы навести ракету на цель, надо знать не только координаты мишени, но и координаты старта. То есть системы наведения морских ракет тоже имеют свою специфику. И разрабатываются эти системы тоже на Урале, в Екатеринбурге, в НПО "Автоматика". Много лет во главе НПО находился Главный конструктор академик Николай Александровия Семихатов.
До того, как в 1946 году прийти в НИИ-885, успел повоевать на фронтах Великой Отечественной. В отделе Н. А. Пилюгина занимался разработкой систем управления. Тогда ещё из трофейных немецких комплектующих собирали "Фау-2". Естественно, ни о каких морских ракетах, тем более подводного базирования, никто тогда и не помышлял. Главным конструктором был Сергей Королев, и Семихатов считает его своим учителем. В 50-е годы ракетостроение разделилось на "морское", "космическое" и "сухопутное". Были образованы новые КБ. Морская тематика, как это ни странно, оказалась заброшена в самую середину России - на Урал. А поскольку здесь в Миассе оказался ракетный центр, то вполне логично институт, где разрабатывали систему управления, оказался тоже на Урале - в Свердловске. Здесь вскоре подобрался коллектив талантливых специалистов, который с успехом решал сложнейшие проблемы, которые и не снились конструкторам наземных и космических ракет.
Поскольку лодка может находиться в любой точке мирового океана, то перед пуском необходимо определить координаты точки пуска и цели, чтобы проложить курс. Для этого, помимо всего прочего, была изобретена система астронавигации. В головной части ракеты находится астрокупол оптико-механическая система, которая считывает положение звезд на небе и определяет координаты и курс. Это гигантский объем данных, где, кроме самых ярких звезд, должно учитываться вращение Земли, её движение относительно Солнца и Луны, угловые склонения и ещё масса дополнительных факторов. По сути, предварительно должна быть создана математическая модель изрядного куска вселенной, к тому же действующая в реальном времени. Создавалось это все ещё в те времена, когда "пентиумами" и не пахло. Но электронно-счетные машины всего лишь выполняют задание, заложенное оператором. В НИИ имелись талантливые математики-аналитики, которые создали формулы расчетов.
Другая система навигации основана на взаимодействии со спутниками. Она конечно проще, но вот надежней ли? Спутники тоже сбиваются, а постановка электронных помех может лишить такую систему всякой управляемости, ослепить её. А вот звездное небо никаким зонтиком не закрыть, и астронавигационная система приведет боеголовку точно в цель.
Когда вслед за американцами начали делать ракеты с разделяющейся головной части, понадобилось решить вопросы наведения каждой головки в отдельности. Ведь у каждой своя цель. А, кроме того, среди двенадцати головок одной ракеты 2-3 ложных, которые должны отвлечь на себя средства обороны противника и создать помехи. У них, естественно, свои задачи, которые надо грамотно перевести в полетное задание. Оптико-механический астрокупол один на всю "голову". Разделяющиеся части снабжать собственной системой ориентации по звездам просто нерационально. Поскольку масса заряда такой части невелика, её задача - поразить цель с максимальной точностью. Поэтому здесь принцип наведения другой - по рельефу. Сканируя земную поверхность, головка находит ориентиры и падает точно в цель.
Большую проблему представляло моделирование этого процесса. Математическая модель, как правило, не дает реального представления о происходящих процессах. А испытательный пуск для проверки неотработанной системы - выброшенные на ветер миллиарды, потерянное время и лишняя загрузка аппаратуры и тысяч людей. Выход был найден: испытывать макет в ванне со специальной жидкостью. Когда стали подбирать, что залить в ванну, оказалось, что по характеристикам проницаемости среды лучше всего подходит... спирт. До сих пор в НИИ ходят легенды о бассейне на шестьсот кубометров чистого спирта, в котором водили на веревках макет с опытной аппаратурой. Но это только легенды. После того, как слух о грядущем бассейне со спиртом распространился по всем отделам и народ начал шушукаться, Семихатов категорически воспротивился: "Или вычерпают, или перетонут. Найдите что-нибудь подешевле". Пришлось опытным путем подбирать водный раствор различных реактивов.
В интституте НПО "Автоматика" отработаны практически все возможные системы наведения. Вплоть до автономной коррекции в полете. Здесь, как считает академик Семихатов, все возможности исчерпаны. Надо менять сам принцип управления головной частью, чтобы добиться сверхточного попадания на дальностях в несколько тысяч километров.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33